The Development and Assessment of Core Strength Clinical Measures: The Reliability and Validity of Medicine Ball Toss Tests

Sell MA, Abt JP, Sell TC, Keenan KA, Allison KF, Lovalekar MT, Lephart SM
Neuromuscular Research Laboratory, Department of Sports Medicine and Nutrition, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA

BACKGROUND
- Core strengthening has become a significant component of conditioning programs developed to optimize athletic performance, reduce risk of injury/reinjury, and facilitate return from injury.
- Despite the wide usage of medicine ball toss tests (MBTs) as a measure of core strength the reliability and validity of these measures have not been clearly established.
- Reliable and valid measures of core strength are necessary to determine the effectiveness of injury prevention, rehabilitation, and performance optimization programs.

SUBJECTS
- Twenty healthy, physically active males (n=10) and females (n=10).
 - No history of chronic pain in the thoracic and/or lumbopelvic region lasting longer than one year.
 - No complaint of pain in the thoracic and/or lumbopelvic region at the time of enrollment.
 - No history of surgery in the thoracic and/or lumbopelvic region.
 - Demographics are presented in TABLE 1.

EXPERIMENTAL DESIGN AND METHODS
- Testing occurred in two sessions separated by a minimum of 24 hours.
 - Session one: isokinetic strength utilizing Biodex Multi-Joint System 3 Pro (Biodex Medical Systems, Inc, Shirley, NY) and MBTs/Session two: MBTs.
 - Concentric-concentric isokinetic strength (n=m) for torso flexion/extension and right/left torso rotation were performed at 60°/second for five repetitions.
 - Subjects performed five MBTs (cm) in the backward (FIGURE 1,2), forward (FIGURE 2, 3), and right/left rotational (FIGURE 4,5) directions.

RESULTS
- Significant ICCs were observed between session one and session two of MBTs (TABLE 2).
- No significant correlations were observed between the MBTs and the corresponding measure of isokinetic strength.
 - Forward: r=-0.047, p=0.845; Backward: r=-0.074, p=0.756; Rotation (Right): r=0.051, p=0.832; Rotation (Left): r=0.180, p=0.447

SUMMARY AND CONCLUSIONS
- The results illustrate that MBTs have excellent intersession test-retest reliability; however, the validity of the MBTs was not established when compared to isokinetic core strength measures at 60°/second.
- The lack of relationship could be due to differences in muscles examined, muscle contraction type, and/or motion performed.
- Future research should include a modification of each of the MBT techniques to allow for maximal effort of the core musculature, as well as finding a field-friendly measure that is valid against isokinetic strength testing while also being reliable.

TABLE 1: Demographics - Mean ± Standard Deviation

<table>
<thead>
<tr>
<th></th>
<th>Males and Females (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>22.7 ± 7.8</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>164.8 ± 25.7</td>
</tr>
<tr>
<td>Mass (kg)</td>
<td>71.0 ± 12.3</td>
</tr>
</tbody>
</table>

TABLE 2: MBTs Intaclass Correlation Coefficients

<table>
<thead>
<tr>
<th>MBT Type</th>
<th>ICC</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>0.835*</td>
<td>0.600 - 0.934</td>
</tr>
<tr>
<td>Backward</td>
<td>0.835*</td>
<td>0.580 - 0.934</td>
</tr>
<tr>
<td>Rotation (Right)</td>
<td>0.870*</td>
<td>0.690 - 0.949</td>
</tr>
<tr>
<td>Rotation (Left)</td>
<td>0.905*</td>
<td>0.742 - 0.966</td>
</tr>
</tbody>
</table>

*Significant p < 0.001

www.nmrl.pitt.edu

This study was supported by the Freddie H. Fu, MD Graduate Research Award.